2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR) | 978-1-7281-8710-5/20/$31.00 ©2021 IEEE | DOI: 10.1109/MSR52588.2021.00073

2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)

A Traceability Dataset for Open Source Systems

Mouna Hammoudi
Johannes Kepler University
Linz, Austria
mouna.hammoudi @ jku.at

Christoph Mayr-Dorn
Johannes Kepler University
Linz, Austria
christoph.mayr-dorn@jku.at

Abstract—Software engineers use requirement-to-method trace
matrices to indicate the methods implementing different system
requirements. Requirement-to-method trace matrices pinpoint
the exact method implementing each requirement, which facili-
tates software maintenance and bug fixing. The code structure of
a system can be used to make predictions about requirement-to-
method traces. In this paper, we present a data set documenting
the requirement-to-method traces as well as the code structure
(methods, variables, etc.) for four open source systems. The
code structure was obtained by parsing the systems under
consideration and extracting the methods, variables, etc. The
requirement-to-method trace matrices were obtained by resorting
to students as well as to the original developers of the systems
who provided us with the list of requirement-to-method traces.

I. INTRODUCTION

Software engineers make use of requirement-to-method
trace matrices to specify which methods implement which
requirements [1]. The code structure of a system can be used
to make conjectures about requirement-to-method traces [1].
Requirement-to-method traces help engineers save time while
performing tasks such as software maintenance and bug fixing.

Background Table I represents the requirement-to-method
trace matrix for a train ticket management system. A
requirement-to-method trace matrix documents the tracing
relationship (Trace, NoTrace, or Undefined) for each require-
ment and each method of the system. Thus, considering r
requirements and m methods, the size of the requirement-
to-method trace matrix would be r x m. The columns in
Table I represent the two different requirements under con-
sideration. The cells within the leftmost column represent
the seven different methods under consideration. Each entry
within Table I apart from the headers represents the tracing
relationship between a requirement and a method for a train
ticket management system. We notice that each cell within
Table I can take three values, namely 7', N, or U. A T entry
within a requirement-to-method trace matrix represents a trac-
ing relationship between a method and the requirement under
consideration. For instance, in Table I, we notice that meth-
ods [-letPassengerln and 2-showTicketlo. have T traces to
requirement 1. This means that both methods /-letPassengerin
and 2-showTicketTo. implement requirement 1. An N tracing
relationship in Table I signifies that the method does not im-
plement the requirement. For instance, we notice that method
1-letPassengerin has an N trace to requirement 2. This means
that method /-letPassengerin does not implement requirement
2. Another possible value for the tracing relationship between

Johannes Kepler University

Atif Mashkoor Alexander Egyed
Johannes Kepler University
Linz, Austria

alexander.egyed @jku.at

Linz, Austria
atif. mashkoor @jku.at

TABLE 1
REQUIREMENT-TO-METHOD TRACES FOR THE TRAIN
TICKETMANAGEMENT SYSTEM (AN ILLUSTRATION)

Method Requirement 1 | Requirement 2
1-letPassengerin T
2-showTicketTo. T
3-proceed ToPayment N
4-proceedToPayment N
T

1

1

S-scanTicket
6-stampTicket
7-getReceipt

c|lc|lz|c|c|lclz

a method and a requirement is the U value, which means that
it is unknown whether the requirement implements the given
method. For instance, we notice that methods 2-showTicket1o.
and 3-proceedloPayment have U traces to requirement 2. This
means that it is unknown whether methods 2-showTicketTo.
and 3-proceedloPayment implement requirement 2. The use
of U traces is beneficial as it is better to assign a U trace
to a given requirement-to-method entry instead of enforcing a
T or an N trace value. The use of N and U requirement-to-
method trace values represents the main difference between
our dataset and the others. Indeed, other datasets solely focus
on specifying 7" traces and assume that all of the unspecified
requirement-to-method entries are automatically N traces. This
is an assumption that might lead to incorrect conclusions as
engineers rarely create complete and accurate requirement-
to-method trace matrices [1]. Explicitly modeling undefined
requirement-to-method entries can be used as an uncertainty
indicator demonstrating that a developer is unsure whether
there should be a Trace or a NoTrace.

Research Opportunities Our dataset allows researchers to
investigate different traceability research problems such as
automated trace prediction, trace maintenance, and trace re-
pair. Specifically, researchers may investigate the correlations
between the code structure and requirement-to-method trace
values. This dataset can also be used to perform empirical
studies by hiring software engineers and prompting them to
fix bugs with or without the use of the requirement-to-method
trace matrices. Such studies can help us understand the benefits
of the use of requirement-to-method traces.

Related Available Datasets Some datasets such as the
one provided by Qusef et al. [2], [3], [4] establish trace
links between unit tests and classes. Some researchers provide
data between code and non-functional requirements [5]. Other

978-1-7281-8710-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MSR52588.2021.00073

wn
wn
w

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:56:10 UTC from IEEE Xplore. Restrictions apply.

TABLE 11
INFORMATION ON THE FOUR STUDY SYSTEMS

Chess | Gantt iTrust | JHotDraw

Language Java Java Java Java
KLOC 7.2 41 43 72
#Methods 752 5013 4913 6520
#Interfaces 23 209 5 99
#Classes 104 666 718 663
#Superclasses 18 180 135 296
#Method Calls 1042 7578 12093 11413
#Class Fields 451 2452 2048 2300
#Sample Reqs 8 18 34 21
rtm,, Size 6016 | 90234 | 167042 136920

datasets provide trace links between source code and fixed
bugs through patch analysis [6]. Our dataset focuses on the
relationship between requirements and code. Cleland Huang
et al.[7] also provide a dataset for requirement-to-code traces.
Their focus is on requirement-to-class traces, but not at the
method level. Requirement-to-method traces are beneficial
given that they pinpoint more exactly the region of code
implementing a given requirement [1]. Also, Cleland-Huang
et al.’s dataset focuses on specifying the portions of code that
trace to a given requirement. On the contrary, our dataset
specifies the methods that trace to a requirement, the ones that
do not trace to a requirement, and the ones that are unknown
to trace to a given requirement. This allows different types
of analysis that measure uncertainty or take uncertainty into
account. In addition, our data set includes details about the
code structure besides requirement-to-method traces.

II. DATASET CONSTRUCTION
A. System Selection

Candidate systems in our study are selected according to
the following criteria: Systems need to exhibit a minimal
complexity (i.e., at least 7 KLOC), but to be not too large
to allow for a significant part of methods to be traced. If such
traces were not available, we contacted the systems’ develop-
ers who were willing to produce the traces. Also, we needed
the systems to be open source in order to parse the source
code and extract information relative to the code structure.
Classes, methods, method calls, interfaces, implementations,
superclasses, and subclasses were extracted using the open
source library Spoon [8]. Furthermore, data dependencies
were extracted for variables declared within classes (field
classes), class variables used within methods (field methods),
and parameters using the open source library Soot [9]. Our
dataset documents the requirement-to-method traces across 81
requirements and 17,198 methods. Table II presents informa-
tion about our four systems and their code structure.

B. Case Studies

1) Case Studies: Our four case studies are written in Java
and are open source. The systems under consideration are
Chess, Gantt, iTrust, and JHotDraw (Table II). The Chess
source code is publicly available on Github and the source

wn

code for Gantt, iTrust, and JHotDraw is available on Source-
forge. Chess [10] is an application of the chess game in which
two players play on a 2D board. Gantt [11] is a system
that allows calendar and resource management. iTrust [12]
is a system that lets patients monitor their medical history.
JHotDraw [13] is a 2D graphics system that allows its user
to create 2D graph structures such as architecture and design
models.

2) Required Criteria for Case Study Selection: We chose
these case studies as they are complex with regards to their
code sizes (between 7 and 72 KLOC in size); the high amount
of lines of code (LOC) is representative of software developed
in industry. Also, 81 functional requirements were available for
these systems along with their requirement-to-method traces.
In the following, we use the term gold standard to refer to
these requirement-to-method traces.

3) Trace Data Collection Process: We obtained our gold
standard by paying the original developers of Chess, Gantt,
and JHotDraw. Also, we asked these developers to enumerate
the key requirements of the systems and we prompted them
to produce traces for these requirements. The developers were
given an entire week to produce the requirement-to-method
traces (the gold standard). For iTrust, the list of requirement-
to-method traces as well as the list of the system’s core require-
ments were all made available on the system’s website [14].
Since iTrust is frequently used as a case study in traceability
research, we expect the quality of these traces to be high.
As previously mentioned, developers did not specify tracing
information for all requirement-to-method entries and left
some undefined (U traces). Among the entries for which trace
information was not specified, we can list inner Java classes,
interfaces, and abstract classes. Given that the traces and the
requirements were produced by the original developers of
our systems, we are confident that the requirement-to-method
traces produced have high quality. Indeed, the developers are
extremely familiar with the source code of the systems given
that they wrote the code for these systems. Therefore, we can
state that we have high quality requirement-to-method traces
for these systems.

Our supporting online material (SOM) [15] includes for
each system information about classes, superclasses, inter-
faces, fieldclasses, fieldmethods, parameters, methods, method
calls, requirements, and traces. The data is available under the
form of JSON files as well as MySQL scripts. The source code
used to extract the files listed above is available online [16].

Figure 1 represents the process followed in order to produce
our dataset for each system. We parsed the source code to
extract the code structure (classes, methods, interfaces, im-
plementations, superclasses, subclasses, etc) using Spoon [8].
The data dependencies for variables were extracted using the
open source library Soot. Where not available, the developers
recreated a set of requirements for the system, they wrote code
for. Then, they specified the requirement-to-method traces for
each system, which we refer to as “developer gold”. To further
assess the quality of the collected traces, we relied on an
experiment conducted by researchers in our group [17] in

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:56:10 UTC from IEEE Xplore. Restrictions apply.

Method Call Dependencies

Source
Code

=

using Soot

Data Dependencies

Students

il

Developer

‘ / Regquirements

[::]]

Fig. 1. Data Collection Process for each System

which they hired 100 master-level students at Johannes Kepler
University and prompted them to produce tracing information
for these systems. All students received training in the domain
of trace recovery and had no background in regards to the
case studies. About half of the students had 2-10 years of
industrial experience while the other half had little or no
industrial experience. All the students were not familiar with
the code and had no prior knowledge about the implementation
details of the case studies. Each student was given 90 minutes
to complete his/her tasks. The range of student votes (7',
N, or U) per requirement-to-method trace is 3 to 12. Also,
some requirement-to-method traces did not receive any student
votes, typically when they were left undefined by the original
developers, as no comparison to their developer gold trace
classification would be possible then.

4) Entity Relationship Diagram: Figure 2 shows the Entity
Relationship Diagram (ERD) representing the different ele-
ments of the dataset and their relationships with each other.
The * symbol denotes a zero/one to many relationship. We
notice that each class might have zero to many methods
and each method is part of one class. Furthermore, each
class might have one superclass and zero to many interfaces.
Conversely, one interface has one to many implementations;
one superclass has one to many subclasses. Each class might
have zero to many variables declared (classfield in Figure 2).
Furthermore, each method might have zero to many class field
usages (fieldmethod in Figure 2). Each method might have
sero to many parameters. The parameter’s isReturn attribute
is a Boolean flag that is set to true if it is used as the
method’s return value, or set to false to indicate its use as
an input parameter. One method might be involved in zero
to many method calls as shown by the methodcall entity in
Figure 2. Finally, the trace entity specifies the gold value for

wn

Requirement-to-method
\ traces

Requirement-to-method

each pair of requirement and method. The trace entity has
T_vote and N_vote attributes that respectively refer to the
number of students that voted for whether a method traces
to a requirement or whether a method does not trace to a
requirement.

5) Gold Standard Characteristics: Table III shows details
about the amount of requirement-to-method traces collected
from the original developers of our case studies. As expected,
the requirement-to-method trace matrices for our four case
studies are incomplete. The high percentage of U traces is
a normal phenomenon given that engineers do not specify
complete tracing information for every requirement-to-method
entry within the trace matrix [1]. There could be a high
percentage of U traces as is the case for iTrust. Despite this
incompleteness, the gold standard presents us with a quantity
of useful data that is more than sufficient. For example, consid-
ering JHotDraw’s rtmy,, 12,658 of 136,920 of its entries have
either 7" or N trace information. Furthermore, we observe that
we have fewer 7' traces than N traces within our requirement-
to-method entries as shown in Table III. The justification
behind this imbalance is that a requirement is implemented
by a small code portion (i.e., a few methods) and the majority
of the remaining methods do not implement the requirement.
For instance, we could only have two methods implementing
a requirement and 2,000 other methods not implementing it.
This explains the disparity among the percentages of 7 and N
traces at the method level.

III. DATA USAGE: EXAMPLE RESEARCH QUESTIONS

The gold standard for our four systems provides some
ground-truth data that can be used by various researchers
to explore traceability problems. We believe our dataset to
be helpful to software engineers given its use of N traces

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:56:10 UTC from IEEE Xplore. Restrictions apply.

methodcall method trace requirement
id id id
id w1 methodname % 1/ Gold . 1 requirementName
callermethodmname | __1| classname 1] T_vote —
calleemethodname classld N_vote
callermethodid . methodld
calleemethodid requirementld
of 1
class 1/ f:lassFleId methodField superclassRelation
id] id id id
classname fieldName ; fieIdNam'e' superClassld
0 classid methodFieldld childClassld
classFieldld
parameter
id interfaceRelation
parameterName | X ¥ id
isReturn interfaceld
methodld implementation|d
Fig. 2. Entity Relationship Diagram for our Dataset
TABLE 111 cation that obscures method calls (method calls cannot be
QUANTIFYING THE REQUIREMENT-TO-METHOD RTMy, INPUT GOLD observed between the client and the server). Even though all
STANDARD of our case studies have Java in common, the findings that
soo] T Nm Un| tomal] Tn] No| Unm can be drawn from the use of our dataset can be generalized
e @ @] @] @] @ to other programming languages different from Java. Indeed,
Chess|563] 2389| 3064| 6016]9.36|39.71]50.93 our dataset provides trace information for methods. Also, we
Gantt |34323166| 66725 90234 (0.38(25.67 [73.95 .
Mrust 3071 717731159562 11670421018 | 23019552 know that methods are a common programming construct that
JHot. [439 12219 | 124262 [136920 |0.32| 8.92]90.76 is encountered in other programming languages that are not

and U traces besides 7" traces. This offers more accurate
requirement-to-method tracing relationships to engineers, as
opposed to other datasets that simply specify 1" traces within
requirement-to-method trace matrices and assume that all of
the remaining unpredicted traces are N traces. Our dataset
could be used by researchers to investigate the presence of
trace errors by analyzing the agreement in developer and
student trace decisions [1], [18]. To this end, the students’ data
specifically can also be used to simulate realistic trace errors.
Thus this data set allows evaluating a technique’s ability to
predict data in the presence of errors within requirement-to-
method traces. Researchers could use automated techniques to
predict requirement-to-method trace values using our dataset.
Then, they could compare the predictions output by these auto-
mated techniques against our gold standard. Also, researchers
could devise automated techniques involving machine learn-
ing, information retrieval, etc., using the code structure to
make predictions and they could compare the output of these
automated techniques against our gold standard.

IV. CHALLENGES AND LIMITATIONS

We avoid research bias by using data originating from
different open source systems and produced by developers
instead of this paper’s authors. Furthermore, our case studies
are representative of software developed in industry since their
complexity is high. iTrust even includes network communi-

wn

necessarily object oriented, such as C, Python, C#, etc. Thus,
the findings that can be reached via the use of our dataset can
be generalized to other programming languages.

V. CONCLUSION

We presented a new dataset for traceability and described
how it was constructed by professional software engineers.
We hope that our dataset can help the software engineering
community to explore different research problems related to
requirement-to-code traceability.

ACKNOWLEDGEMENT

Part of this work was funded by the Austrian Science
Fund (FWF) under the grant numbers P31989 and P29415-
NBL and by the state of Upper Austria via LIT-2019-8-SEE-
118 and the LIT Secure and Correct System Lab.

REFERENCES

[1] A. Ghabi and A. Egyed, “Code patterns for automatically validat-
ing requirements-to-code traces,” in 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 200-209, 2012.

A. Qusef, R. Oliveto, and A. De Lucia, “Recovering traceability links
between unit tests and classes under test: An improved method,” in
2010 IEEE International Conference on Software Maintenance, pp. 1—
10, 2010.

A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual analysis,”
Journal of Systems and Software, vol. 88, pp. 147 — 168, 2014.

(2]

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:56:10 UTC from IEEE Xplore. Restrictions apply.

4] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “Scotch:
Test-to-code traceability using slicing and conceptual coupling,” in 2071
27th IEEE International Conference on Software Maintenance (ICSM),
pp. 63-72, 2011.

|5] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection
and classification of non-functional requirements with application to
early aspects,” in I4th IEEE International Requirements Engineering
Conference (RE’06), pp. 3948, 2006.

6] C.S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins, “Recovering
traceability links between source code and fixed bugs via patch analysis,”
(New York, NY, USA), Association for Computing Machinery, 2011.

|7] “http://coest.org/.”

[8] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A library for implementing analyses and transformations of java
source code,” Software: Practice and Experience, vol. 46, pp. 1155-
1179, 2015.

[9] “http://www.cs.toronto.edu/ aamodkore/notes/dfa-tutorial.html.”

[10] “https://github.com/warpwe/java-chess.”

[11] “https://sourceforge.net/projects/ganttproject.”

[12] “https://sourceforge.net/projects/itrust.”

[13] “https://sourceforge.net/projects/jhotdraw.”

[14] Y. Shin and L. Williams, “Work in progress: Exploring security and pri-
vacy concepts through the development and testing of the itrust medical
records system,” in Frontiers in Education 36th Annual Conference, (Los
Alamitos, CA, USA), pp. 30-31, IEEE Computer Society, oct 2006.

[15] “https://doi.org/10.5281/zenodo.4453526.”

[16] “https://github.com/jku-isse/tracegeneratorcdg/tree/master/tracetool.”

[17] A. Egyed, F. Graf, and P. Griinbacher, “Effort and quality of recovering
requirements-to-code traces: Two exploratory experiments,” in 2010 18th
IEEE International Requirements Engineering Conference, pp. 221-230,
2010.

[18] M. Hammoudi, C. Mayr-Dorn, A. Mashkoor, and A. Egyed, “On the
effect of incompleteness to check requirement-to-method traces,” in Pro-
ceedings of the 36th ACM/SIGAPP Symposium On Applied Computing,
SAC 2021.

wn
W
=)

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:56:10 UTC from IEEE Xplore. Restrictions apply.

